Neuronal Chemosensation and Osmotic Stress Response Converge in the Regulation of aqp-8 in C. elegans
نویسندگان
چکیده
Aquaporins occupy an essential role in sustaining the salt/water balance in various cells types and tissues. Here, we present new insights into aqp-8 expression and regulation in Caenorhabditis elegans. We show, that upon exposure to osmotic stress, aqp-8 exhibits a distinct expression pattern within the excretory cell compared to other C. elegans aquaporins expressed. This expression is correlated to the osmolarity of the surrounding medium and can be activated physiologically by osmotic stress or genetically in mutants with constitutively active osmotic stress response. In addition, we found aqp-8 expression to be constitutively active in the TRPV channel mutant osm-9(ok1677). In a genome-wide RNAi screen we identified additional regulators of aqp-8. Many of these regulators are connected to chemosensation by the amphid neurons, e.g., odr-10 and gpa-6, and act as suppressors of aqp-8 expression. We postulate from our results, that aqp-8 plays an important role in sustaining the salt/water balance during a secondary response to hyper-osmotic stress. Upon its activation aqp-8 promotes vesicle docking to the lumen of the excretory cell and thereby enhances the ability to secrete water and transport osmotic active substances or waste products caused by protein damage. In summary, aqp-8 expression and function is tightly regulated by a network consisting of the osmotic stress response, neuronal chemosensation as well as the response to protein damage. These new insights in maintaining the salt/water balance in C. elegans will help to reveal the complex homeostasis network preserved throughout species.
منابع مشابه
Functional analysis of the aquaporin gene family in Caenorhabditis elegans.
Aquaporin channels facilitate the transport of water, glycerol, and other small solutes across cell membranes. The physiological roles of many aquaporins remain unclear. To better understand aquaporin function, we characterized the aquaporin gene family in the nematode Caenorhabditis elegans. Eight canonical aquaporin-encoding genes (aqp) are present in the worm genome. Expression of aqp-2, aqp...
متن کاملTranscriptional regulation of AQP-8, a Caenorhabditis elegans aquaporin exclusively expressed in the excretory system, by the POU homeobox transcription factor CEH-6.
Due to the ever changing environmental conditions in soil, regulation of osmotic homeostasis in the soil-dwelling nematode Caenorhabditis elegans is critical. AQP-8 is a C. elegans aquaporin that is expressed in the excretory cell, a renal equivalent tissue, where the protein participates in maintaining water balance. To better understand the regulation of AQP-8, we undertook a promoter analysi...
متن کاملMonitoring Response of a Few bZip Transcription Factors in Response to Osmotic Stress in Sunflower
Background: Sunflower (Helianthus annuus L.) is one of the important vegetable oil supplies in the world and in Iran, as well. It is classified as a drought semi-tolerant crop; however, its yield is adversely affected by drought stress. Understanding the initial events in sensing stress and the related physiologic and biochemical events thereafter, is crucial in designing droug...
متن کاملG Protein-Coupled Receptor Kinase Function Is Essential for Chemosensation in C. elegans
G protein-coupled receptors (GPCRs) mediate diverse signaling processes, including olfaction. G protein-coupled receptor kinases (GRKs) are important regulators of G protein signal transduction that specifically phosphorylate activated GPCRs to terminate signaling. Despite previously described roles for GRKs in GPCR signal downregulation, animals lacking C. elegans G protein-coupled receptor ki...
متن کاملChanging the Physiological Response and Water Relationships in Sweet Pepper When Stopping the Activity of Root Aquaporin in Drought Stress
Aquaporins are the main proteins in the plasma membrane, which facilitates the movement of water, carbon dioxide, and other small soluble material through the membrane. The aim of this study was to investigate the role of root acuporine on the physiological, biochemical and biochemical changes and water relations under drought stress. For this purpose, a study was conducted in a completely rand...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017